
1

資訊系統原理

郭大維教授
臺灣大學資訊工程系

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Contents

?Computer Systems Overview
?Operating Systems Concept
?UNIX
?Other System Services

?Unified Modeling Language
?UML Introduction
?System Development Process
?Use Cases, Class Diagrams, etc.

2

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Operating Systems Concept

?What is an operating system?
?Operating system architecture
?Process concept
?CPU scheduling
?Memory management
?File and I/O systems
?Networking

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

What is an operating system?
?What is an operating system?
?A package of software called OS!

Hardware

Operating System

Application Systems

useruser user useruser user
user

Kernel interface
to the hardware

System call
interface

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 3-5

3

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

What is an operating system?

?A control program
?Control the execution of user programs
?Prevent errors/misuse

?An environment for efficient/ convenient
usage of a computer system.
?A resource allocator
?CPU, memory space, file storage, I/O

devices, shared code, data structures,
etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

What is an operating system?
?Terminology
?Multiprogramming
?CPU/job scheduling – short/mid/long-term

?Time-sharing
?Multiprogramming + CPU switching ~

interactivities
?Batch processing
?Job pool – with/without multiprogramming

?Spooling (Simultaneous Peripheral Operation
On-Line)
?Printf -> buffer (memory/disks) -> printout at a

printer.
?Card readers -> disks -> run process

4

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Operating Systems Concept

?What is an operating system?
?Operating system architecture
?Process concept
?CPU scheduling
?Memory management
?File and I/O systems

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

OS Architecture

terminal controller, terminals,
physical memory, device controller,
devices such as disks, memory, etc.

CPU scheduling, signal handling,
virtual memory, paging, swapping,
file system, disk drivers, caching/buffering, etc.

Shells, compilers, X, application programs, etc.

UNIX

Kernel interface
to the hardware

System call
interface

useruser user useruser user
user

5

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

OS Architecture

?What components/functionality it has?
?Process Management
?Creation/deletion/suspension/resumption of

user/system processes
?A process is a program in execution.

?Process scheduling
?Mechanisms for process synchronization
?Interprocess communication mechanisms

?Memory Management
?Memory allocation/deallocation
?Paging/segmentation memory management

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 49-54

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

What is an operating system?
?File Management
?Creation/deletion of files/directories

?Mapping of files to secondary storage

?I/O Systems & Storage Management
?Hide the peculiarity of specific H/W devices from users
?Storage allocation and management
?Disk scheduling

?Networking
?Various networking service such as naming resolution

?Protection System
?CPU, Memory, I/O devices

6

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

OS’s on Parallel/Distributed
Systems

?Parallel Systems
?More than one processor in close

communication, sharing of bus, clock,
sometimes memory and peripheral devices –
tightly coupled systems!

?Symmetric/asymmetric operating systems.

?Distributed Systems
?More than one processor without sharing of

memory or any clock – loosely coupled
systems!
?Heterogeneous vs homogeneous systems!

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 14-17

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Real-Time OS

?Why RTOS
?A convenient and reliable environment to develop

time/safety-critical applications.
?Requirements – depending on applications!
?Predictability – Verifiability & interrupt latency
?Reliability - Strictness of Deadline Violations
?Reconfigurability - System Size and Functionality
?Efficiency of System Components - Time

Granularity, Threads, and Resource Management
?Variable Models of Task Communication -

Characteristics of Applications

7

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

What is an operating system?

?Roadmap
?Booting
?I/O Structure
?Storage Hierarchy
?etc

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 24-30, 35-37

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Computer System Architecture

CPU

cache

memory
controller

memory

disk controller

printer
controller

printer

8

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Booting

?Bootstrap program
?Initialize all aspect of the systems
?E.g., CPU registers, device

controllers, memory, etc.

?Load OS, and Run it!
?Run init to initialize system services
?Start virtual memory, various daemons,

login processes, etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

I/O Structure

?Parallelism of CPU and I/O activities

?Interrupts

I/O device

Process running on a CPU
executing

transferring
idle

I/O request I/O request

done

Process execution interrupt

Interrupt handler
return

Process execution

Save Return Trace!

9

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

I/O Structure

Bottom
Half

Top
Half

processesUser
Space

OS

System call
interface

system calls, e.g.
READ/WRITE

device drivers

hardware

time

interrupt

Interrupt handler

data transfer

* Parallelism of multiple process executions!

?? Could OS return control to the process sooner??
•Synchronous I/O, e.g., reads
•Asynchronous I/O, e.g., writes

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

I/O Structure

?Interrupt types:
?Software interrupts (traps)
?Signals, division-by-zero, etc.

?Hardware interrupts
?Service requests of I/O devices, etc.

?Servicing of interrupts
?Generic handler
?Interrupt vector (UNIX)

?Masks, Disabling, Enabling
Handler_a()
{
… ..
} bits to mask interrupts

10

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

I/O Structure

?Device Status Table

Printer 1
Status: idle
Disk 1
Status: Busy

…
..

File:XX
Offset:yyy
Size:zzz

File:KK
Offset:iii
Size:jjj

Process execution

Waiting
for
I/O
completion

Synchronous behavior!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

I/O Structure
? DMA (Direct Memory Access)
? Release CPU from handling excessive

interrupts
? e.g., a high-speed device:
? 2us service / 4us

? Procedure, e.g., WRITE
1. Use device driver to set up the registers of

the DMA controller.
2. DMA moves blocks of data between

memory and its own buffers.
3. Transfer from its buffers to its devices

4. Interrupt the CPU

Until done

11

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Storage Hierarchy

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 24-30, 35-37

registers

cache

main memory

electronic disks (battery) + others,
e.g. flash

magnetic disks

optical disks

tapes

tertiary storage systems

CPU can directly access them!

nonvolatile storage

removable media

* Media – disk, Device – disk drive, System – device + controller + software

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

I/O and Storage Systems

?Cost/bit vs Capacity/dollar vs volatility
?Device I/O
?Memory-Mapped I/O
?For devices with fast response time

?Program I/O (PIO)
?polling

?Interrupt-Driven I/O

12

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Storage Hierarchy

?Caching
?When an information is used and

might be used again, it is cached at a
faster storage system.
?Strategies at different levels?

?Buffering
?When an information is “pushed” out

to a slower storage system, it is
buffered at a faster system for later
actions.
?Relationship with caching?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Storage Hierarchy
?Coherency and Consistency
?Vertical information flow
?“Horizontal” information flow

CPU

Memory

disks

CPU

Memory

disks

13

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Dual Mode Protection

?What is “dual mode”?
?User mode
?Kernel mode
?Privileged instructions, such as I/O,

memory-setting related instructions
?Rationale

?Only execute privileged instructions at
the kernel mode to protect errors and
misuse!

?Requirement
?Hardware support

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 39

…
Add R3, R4
SYS 23
ADD R5, R4
…

SysCall()
{

… . }

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Booting - Revisiting

?Bootstrap program – Kernel and Single
User Mode
?Initialize all aspect of the systems
?E.g., CPU registers, device controllers,

memory, etc.
?Load OS, and Run it! – Kernel and

Multi-User Mode
?Run init to initialize system services
?Start virtual memory, various daemons,

login processes, etc.

?Shell Processes – User and Multi-User
Mode

14

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

I/O Structure Revisiting

Bottom
Half

Top
Half

processUser
Mode

Kernel
Mode

System call
interface

system calls, e.g.
READ/WRITE

device drivers

hardware

time

interrupt

Interrupt handler

data transfer

* A bit in PSW of CPU to distinguish user or privileged instructions!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Operating Systems Concept

?What is an operating system?
?Operating system architecture
?Process concept
?CPU scheduling
?Memory management
?File and I/O systems

15

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Concept
?Process
?An active entity
?The corresponding passive entity
?Program code

new
ready

running

waiting

zombie
fork

scheduled

interrupt exit

I/O or event waiting
completed

stop

suspend

resume

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 89-97, p 126.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Concept
?Process Image in Memory

?System Resources
? Program Counter (PC)
? Process Status Register
? Stack Pointers (sp)
?Memory
? etc.

Code Segment

Data Segment

PC

heap

user stack
argv, argc,…

sp

16

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Concept
?Process Control Block

Struct PCB {
char p_pid;
char p_pri;
char p_ppid;
int pc; /* program counter */

…
int rq_former, rq_next; /* for ready queue*/
int files[NFILE];

} PCB[NPROC];

•major queues:
• I/O queues
• ready queue

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Concept
Process i OS Process j

Save state into PCB[i]

..

Load state from PCB[j]

Save state into PCB[j]

Load state from PCB[i]

..
..

..

Interrupt or
system call

Interrupt or
system call

dispatch

17

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Scheduling

?A Ready Queue

…

Priority-decreasing

0
1
2

PCBi PCBj

PCBk

•Select the highest-priority
process to run and de-queue it!
•Hook the running process
back to the ready queue!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Context Switching – Necessary
Overheads for Multiprogramming

?Def.
?Switch the CPU from one process to

another process
?Save the state (or called context) of the

running process
?Reload the state of the ready process

?Context Switching Time
?Hardware-dependent!
?Multiple register sets!
?Special hardware instructions!

18

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Concept

?Kernel-Supported Thread
?A program counter
?A register set
?A stack space

?User-Level Thread

Code Segment

Data Segment

user stack sp1

PC1

user stack sp2

PC2

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 103

OS

A process with one
kernel-supported thread

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Concept
?Thread – Lightweight process
?An ordinary process contains one

thread!
?Types
?Kernel-Supported Threads
?User-Level Threads

OS OS OS

Ordinary process 3-kernel-supported
threads in a Process

3-user-level
threads in a Process

19

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Operating Systems Concept

?What is an operating system?
?Operating system architecture
?Process concept
?CPU scheduling
?Memory management
?File and I/O systems

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

CPU Scheduling

?Scheduling Criteria
?CPU Utilization
?Throughput = Number-of-Completed-Processes / Sec

?Turnaround Time
?Completion time – Submission time

?Waiting Time
?Time spent in the ready queue

?Average vs Worst-Case vs Combination
?variance

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 127-130..

20

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

CPU Scheduling

?First-In-First-Out (FIFO) Scheduling

?Select the first process in the queue for
execution!
?“Fair” but lengthy waiting for urgent

processes! -> Shortest Job First??

… ..
PCBi

Ready Queue

PCBjPCBk PCBa

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

CPU Scheduling – FIFO

? Processes Burst CPU Time Arrival Time
P1 24 0
P2 3 1
P3 3 1

0 24 27 30

Average Waiting Time = (0 + 23 +26) / 3

21

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

CPU Scheduling
?Priority-Driven Scheduling

…

Priority-decreasing

0
1
2

PCBi PCBj

PCBk

•Select the highest-priority
process to run and de-queue it!
•Hook the running process
back to the ready queue!

•Starvation problem?!!

Ready Queue

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 133-137.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

CPU Scheduling – Priority

? Processes Burst CPU Time Arrival Time Priority
P1 24 0 3
P2 3 1 2
P3 3 1 1

0 1 30

Average Waiting Time = (6 + 0 +3) / 3

4 7

22

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

CPU Scheduling
?Round-Robin Priority-Driven Scheduling

? N processes, quantum = ? , (N * ?) cycle time!

? How small ? should be? Any limitation?

…

Priority-decreasing

0
1
2

PCBi PCBj

PCBk

Ready Queue

Run CPU for a “time quantum”(time slice), e.g. 10ms

Pop

Insert
here or
at a lower
priority

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

CPU Scheduling – RR

? Processes Burst CPU Time Arrival Time Priority
P1 24 0 1
P2 3 1 1
P3 3 1 1

0 2 30

Average Waiting Time = (6 + 5 +6) / 3

4 6

Quantum = 2

8 9 10

23

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

CPU Scheduling

Bottom
Half

Top
Half

processesUser
Space

OS

hardware

Timer expires to
•Expire the running process’s

time quota
•Keep the accounting info

for each process

System calls such as I/O req
which may cause the releasing
CPU of another process!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Concept - Revisiting
Process i OS Process j

Save state into PCB[i]

..

Load state from PCB[j]

Save state into PCB[j]

Load state from PCB[i]

..
..

..

Interrupt or
system call

Interrupt or
system call

dispatch

24

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Operating Systems Concept

?What is an operating system?
?Operating system architecture
?Process concept
?CPU scheduling
?Memory management
?File and I/O systems

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Memory Management

?Logical address vs Physical Address

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 245-246.

CPU
Logical Address
for Instructions
or Data

Memory
Management

Unit
Physical
Address

Process
Image

Memory
Process
Image

PC

25

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Memory Management

?Contiguous Allocation
?Single Partition

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 249-264.

The
User

Process

Memory

OS

CPU

Memory
Management

Unit

If logical -address < Limit-Register
Then

physical-address = logical address + Relocation -Register
Else

Signal the user process!

Limit-Register

Relocation-Register

345

10000

10345
5000

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Memory Management
?Contiguous Allocation
?Multiple Partitions

P1

OS
400K

1000K

P2

P3
2000K

2300K
2560K

P1

OS
400K

1000K

P4

P3
2000K

2300K
2560K

1700K

-P2+P4

P5

OS
400K

1000K
P4

P3
2000K

2300K
2560K

1700K

-P1+P5

900K

3holes = 660KB!!!

26

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Memory Management

?Contiguous Allocation
?Multiple Partitions
?First-Fit
?Best-Fit
?Worst-Fit

?Fragmentation
?External
?Internal

P5

OS
400K

1000K
P4

P3
2000K

2300K
2560K

1700K

900K
P5

OS
400K

P6
2300K
2560K

1700K

900K
Next request
is for 819000B,
i.e., 800KB-200B

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Memory Management
?Solutions to Fragmentation
?Compaction

P5

OS
400K

1300K
P4

P3
2000K

2300K

2700K

1700K

1000K
P5

OS
400K

1400K P4
P3

2700K

1700K

1000K

Move 700KB!

P5

OS
400K

P4
P3

2000K

2300K

2700K

1000K
P5

OS
400K

1300K
P4
P3

2700K

1700K

1000K

Move 400KB! Move 300KB!

27

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Memory Management

?Paging – Another solution to external
fragmentation!

Page 0

Page 1

Page 2

Page 3

Frame #

Page 0

Page 2

Page 1

Page 3

73

32

41

10

Frame #Page #

0

1

2

3

4

5

6

7logical
memory

physical
memory

A page
table for
each process

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Paging

? Address Translation

page number offset
p bits d bits

frame number offset

f bits d bits

F

P D

Logical Addr.

P
F D

28

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Paging

Page 0

Page 1

Page 2

Page 3

physical
address

Page 0

Page 2

Page 1

Page 3

11111

01110

10001

00100

FP

00000

00100

01000

01100

10000

10100

11000

11100logical
memory

physical
memory

page
table

P D
2 bits 2 bits

F D
3 bits 2 bits

0000

0100

1000

1100

01 10 100 10

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Paging

Page 0

Page 1

Page 2

Page 3

physical
address

Page 0

Page 2

Page 1

Page 3

11111

01110

10001

00100

FP

00000

00100

01000

01100

10000

10100

11000

11100logical
memory

physical
memory

page
table

0000

0100

1000

1100

1100 A
1101 B
1110 C
1111 D

Page 3
11100 A
11101 B
11110 C
11111 D

Frame 7

29

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Paging
?Hardware Support for Paging
?Registers as Page Tables
?Memory-Resident Page Tables
?Translation Look-aside Buffer (TLB)

F

P D

P

F D
P F

TLB

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Paging
? Paging-TLB
?TLB Hit
?Access time = TLB-access-time + Inst/Data-

Memory -Access
?E.g., 20ns + 100ns

?TLB Miss
?Access Time = TLB-access-time + Page-

Table-Memory-Access + Inst/Data-Memory-
Access
?E.g., 20ns + 100ns + 100ns

?Hit Ratio 80%
?Effective access time = 20ns + 100ns +

0.2 *100ns = 140ns

30

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Virtual Memory

?Definition
?A technique that allows the execution of

processes that may not be completed in memory.
?Swapping
?Process image may reside in the backing store

rather than swap the entire image in.
?Page fault: occurs when program references a

non-memory-resident page.
?Thrashing
?A process is spending more time in page faults

than executing.
* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 289,291-293,317.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Context Switching-Revisiting
?Def.
?Switch the CPU from one process to

another process
?Save the state (or called context) of the

running process
?Reload the state of the ready process

?Context Switching Time
?Hardware-dependent!
?Multiple register sets!
?Special hardware instructions!

31

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Concept-Revisiting

?Process Control Block
Struct PCB {

char p_pid;
char p_pri;
char p_ppid;
int pc; /* program counter */

…
int files[NFILE];

} PCB[NPROC];

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Operating Systems Concept

?What is an operating system?
?Operating system architecture
?Process concept
?CPU scheduling
?Memory management
?File and I/O systems

32

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File System
?Provides a mechanism for on-line storage

of and access to both data and programs
?Components
?Files: logical unit abstracted by the OS.
?A directory structure: special files to

organize and provide information to files.
?Implementation Issues
?File storage
?Disk space allocation, free-space recovery, etc.

?File access
?Direct/sequential access, protection, etc.

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 337-342,346-348.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File System
?What should be considered?
?File attributes such as name, file

operations such as seek, file types
such as executable, file structures
such as those for Word.

?File System Structure
?File systems usually reside on block-

oriented devices – block transfer
?Characteristics
?In-place update
?Any given block can be accessed directly.

33

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File System
?File Attributes
?Name, type, (disk) location, size,

protection, modified/created time/date,
user/group ID, etc.

?File Operations
?Create, write, read, reposition, delete,

truncate.
?File Structure
?File: free form – a sequence of bytes in

UNIX
?Directory: a structured file in UNIX

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File System – File Type

?Why file type?
?OS can recognize a file and operate on it in a

proper way.
?Common Tecniques
? Include the type as a part of the name:

?Executable . Exe, .com, .bin
?Object .obj, .o

?Read information such as creators in file
attributes
?UNIX – store a crude magic number at the

file beginning

* In many cases, extensions are only considered as hints.

34

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File System – File Structure

?Approaches
?A minimum number of file structures
?UNIX – flexible but with limited support
?The file structure for executables must

be supported

?A number of file structures and special
operations
?No support of file structures requireed by

new applications
?Large OS size!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File System

?File System vs I/O System vs Device

File System

I/O System

Devices

See directories
with a root and files!

See a collection of
logical blocks with
continuous numbers!

drivers &
interrupt
handlers

Mapping of logical blocks
to physical blocks

Mapping of each file
to a set of logical blocks

Provide a directory structure

physical blocks
= disk sectors

35

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File Systems

?File Methods
?Sequential Access
?Basic Operations
?READ, WRITE + file pointers

?Direct Access
?Basic Operations
?READ N or Write N, where N is the relative block

number.

File: a sequence of bytes … ..

a sequence of
(logical) blocks

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File System – A UNIX Approach
?Process Control Block

Struct PCB {

char p_pid;

int pc; /* program counter */

…

int files[NFILE];

} PCB[NPROC];

Read(4, …)

Tables of
Opened Files
(per process)

System
Open File
Table

In-core
i-node
list

i-node
i-node

i-nodesync

data block
data block

kernel spaceuser space

open create an entry
(file current position, etc)

file-open-count++
Load the corresponding
i-node if it is absent.

* The i-node structure of a file includes info regarding the disk location of the file.

36

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File System – A UNIX Approach
?Process Control Block

Struct PCB {

char p_pid;

int pc; /* program counter */

…

int files[NFILE];

} PCB[NPROC];

Read(4, …)

Tables of
Opened Files
(per process)

System
Open File
Table

In-core
i-node
list

i-node
i-node

i-nodesync

data block
data block

kernel spaceuser space

read/write adjust the current
file position - offset

Modify the corresponding
in-core i-node structure if needed.

* When the file is closed, and file-open-count = 0, then the disk-resident i-node should be modified!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

BSD UNIX i-node

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 380.

mode
owner

timestamp
size block
ref-count

triple indirect

double indirect

single indirect

direct blocks

data
data
data
…

…

data
data

data
…

…
…

…

data

data
…

data
…

•4KB block size
•12 direct pointers

•48KB
•1 single indirect

•4-byte block ptr
•1K * 4KB = 4MB

•>> 4GB for the largest file!
(offset = 32 bits, 4G=232)

37

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Memory-Mapped File

?Allow a part of the virtual address space
to be logically associated with a section
of a file.

1
2

Virtual Memory
for Process A

1
2

Virtual Memory
for Process B

Physical Memory

1 2 3FileA:

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File System – Directory Structure

?Partition (/Volume):
?a low level structure in

which files and
directories reside.

?Directory:
?Records info for “all”

files on a partition.

directory

files

directory

files

…

disks

partition

partition

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 349,354-358.

38

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File System – Tree-Based Directory

? Path name
?Specify a file by listing “node”names from the root to the

corresponding node in the structure
?/users/userA/info-sys/test

vmunix

/

dev

console lp0 …

bin

csh …

lib

libc.a …

usr

include …

etc

passwd …

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File System – Tree-Based Directory

? Path name
?Absolute path name
?Begin at the root
? /usrs /usrA/fileA

?Relative path name
?Begin at the current directory
?usrA/fileA

? Path Names vs Devices
?Mixing of device names and directories – MS

DOS/Windows
?C:/mine/ntu/mail

?No distinguished features – A UNIX approach

39

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Sharing of Files
?Hard Link
?Each directory entry creates a

hard link of a filename to the i-
node that describes the file’s
contents.

?Symbolic Link (Soft Link)
? It is implemented as a file that

contains a pathname.
?Example: Shortcut on

Windows

foo

bar

/usr/joe

/usr/sue
File i-node:

Reference = 2

foo

bar

/usr/sue

File i-node:
Reference = 1

/usr/joe

File i-node:
Reference = 1

data file:
/usr/joe/foo

* Problem – infinite loop in tracing a path name
with symbolic links – 4.3BSD, no 8 passings of
soft links

* Dangling pointers

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

File Systems - Mounting

?(name of the device, mount point)

tmp

Use an appropriate device driver
to read the device directory and
verify the format => mount!

•Mount point: the location within
the file structure at which to
attach the file system.

•A bit in the i-node indicates that
whether a file system is mounted
on it! -> find the i-node of the
root of the mounted file system.

UNIX: manual mounting

40

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Protection

?Major concern for information
storage
?Reliability – prevent physical damage
?Information Duplication!

?Protection – prevent improper
access
?Access Control!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Protection

?How to prevent improper access?
?Access control!
?Read, Write, Execute, Append, Delete, List, etc

?Approaches:
?Complete isolation
?No protection at all
?Controlled access by limiting the “types” of

file access based on some factors:

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 360-362.

41

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Protection
?Access user list for each file/directory
?{ < user-ID, allowed access types> … }
?Tedious in maintenance and variable directory

sizes -> condense such info (UNIX)
?Read/write/execute over owner/grp/others
?Issues
?Control in group memberships
?Membership per user?

?A password for each file/directory
?A large number of passwords
?Different passwords for different levels of

protection?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Operating Systems Concept

?What is an operating system?
?Operating system architecture
?Process concept
?CPU scheduling
?Memory management
?File and I/O systems

42

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

I/O Subsystems
?Why?
?Provide the simplest interface to the rest

of the system
?Optimize I/O for the maximum

concurrency
?Variations:
?Block vs Character I/O
?Sequential/Random Access
?Synchronous/Asynchronous Transfer
?Dedicated/Share
?Read-Only/Read-Write

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 398, 408-410, 414-415.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

I/O Subsystems
?Conflicting trends
?Increasing standardization of software/ hardware

interfaces
?Increasing broad variety of I/O devices
?Device drivers which provide a uniform device-access

interface to the I/O subsystem.

?How the I/O system improves the efficiency of
the computer?
?Schedule I/O operations, e.g., those on disks.
?Use techniques such as buffering, caching, or

spooling.

43

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

I/O Subsystems

?Approaches
?Abstraction – interface
?Encapsulation – device drivers

Various controller, such as SCSI controller
Various devices, such as disks, mouse

OS
Various drivers

System Calls

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Principles in Doing I/O

?Reduce the number of context switches.
?Reduce the number of data copyings.
?Reduce the frequency of interrupts
?Large transfer, smart controller, etc.

?Increase concurrency
?DMA controller

?Move processing primitives into hardware.
?Balance CPU, memory subsystems, bus,

and I/O memory.

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 424-425.

